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ABSTRACT

We propose a system to develop a basic automatic speech
recognizer(ASR) for Cantonese, a low-resource language,
through transfer learning of Mandarin, a high-resource lan-
guage. We take a time-delayed neural network trained on
Mandarin, and perform weight transfer of several layers to a
newly initialized model for Cantonese. We experiment with
the number of layers transferred, their learning rates, and pre-
training i-vectors. Key findings are that this approach allows
for quicker training time with less data. We find that for every
epoch, log-probability is smaller for transfer learning models
compared to a Cantonese-only model. The transfer learning
models show slight improvement in CER.

Index Terms— automatic speech recognition, transfer
learning, time-delayed neural networks, Cantonese ASR,
low-resource languages

1. INTRODUCTION

Much of the work done thus far on automatic speech recogni-
tion has focused on a subset of high-resource languages, such
as English, Spanish and Mandarin Chinese — these languages
are fortunate to have expert-built dictionaries, part-of-speech
taggers, language models, as well as large-amount of high-
quality voices recorded in professional studios. All these al-
low for development of state-of-art ASR systems. However,
there are approximately 6500 languages in the world, many
of which spoken by millions of people, yet have no such re-
sources and are little studied for speech recognition. Inter-
est has recently been taken in working with low-resource lan-
guages. This work both generalizes and strengthens language
and speech modeling technologies, and opens up speech tech-
nologies to a new cohort of speakers.

Cantonese is a variety of Yue Chinese spoken by over 100
million people in Southeastern China. Most speakers of Can-
tonese are fluent in Mandarin, the national language, and one
at the forefront of speech research. As a result, there is a
general lack of interest in Cantonese such that it is a low-
resource language. This is further complicated by its lack of

Homayoon Beigi'?

Recognition Technologies, Inc.?
White Plains, NY
beigi @recotechnologies.com

a standardized written form' because Cantonese is a spoken-
dialect, which has made it difficult for quality textual and au-
dio corpora to be collected.

Though varieties of Chinese are often thought of as
merely dialects, they are not mutually intelligible and just
as distinct as family like Romance languages. Some key
differences between Cantonese and Mandarin are: 6 vs. 4
tones, presence of final stops, lack of initial retroflexes, and
colloquial lexicon. Still, the languages share a common an-
cestor and many similarities. Thus, we aim to leverage the
myriad of resources available in Mandarin Chinese to train a
state-of-the-art Mandarin ASR system. From here, we apply
transfer learning to initialize parameters of a Cantonese ASR
system, training further on a limited Cantonese dataset.

2. RELATED WORK

2.1. Transfer Learning

Transfer learning is a vital technique that generalizes models
trained for one task to other tasks [1]. In speech process-
ing, some common patterns represented by features such as
MFCCs and pitches are shared across languages, especially
for similar/geographically closely located languages such as
Cantonese and Mandarin. Neural network models have many
parameters, and as such depend on large volumes of data to
learn the patterns of a problem. Furthermore, they are not ro-
bust to low-quality training data with errors. Both issues are
prevalent when working with low-resource languages. Trans-
fer learning helps to alleviate these issues, since we are able to
use well-maintained corpora from high-resource languages.
A key idea is that the features learned by deep neural network
models are more language-independent in earlier layers, and
more language-dependent in later layers [1].

Zoph et al. [2] show the effectiveness of applying trans-
fer learning on different languages in the domain of machine
translation. Initializing from parameters of a parent model
in French-English and training child models in low-resource
languages such as Turkish and Urdu, they see significant in-
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creases in BLEU scores. They find better gains when apply-
ing transfer learning to related languages, such as French and
Spanish, to unrelated languages, such as French and German.

Kunze et al. [3] develop a German ASR system using the
transfer learning approach of model adaptation [1]. This in-
volves first training a model on one language (in this case En-
glish), and then retrain all or parts of it on a different language
(German). They use an 11-layer convolutional neural net-
work (CNN), and experiment with fixing k layers. They find
that such weight initialization allows for much faster training
without a decrease in quality. Freezing more layers (higher
k) decreases training time, but the best-performing model al-
lows all layers to learn (k=0). Our report seeks to experiment
similarly, but with a time-delayed neural network (TDNN) on
Mandarin to Cantonese.

2.2. State-of-Art for Cantonese ASR

We primary consider the BABEL Cantonese dataset, further
described in Section 3. Karafiat et al. [4] explore feature
extraction using a 6-layer stacked bottleneck neural net-
work. These outputs are used as features for a GMM-HMM
recognition system. They concatenate these features with
fundamental frequency f0, reasoning that pitch is important
to Cantonese, a tonal language. Further, they apply region-
dependent transforms, a speech-specific GMM optimization
method [4], to all these features, and arrive at a character-error
rate (CER) of 42.4%.

Further work is done by Du et al. [5], who note an in-
herent difficulty: because there is no standardized form of
Cantonese, it is difficult to perform web-scraping tasks in iso-
lating Cantonese text. Therefore, they combine the BABEL
Cantonese transcriptions with data-augmented Cantonese text
machine translated from transcriptions of Mandarin telephone
conversations. Using 88 features including pitch, Mel-PLP,
and TRAP-DCT input into a bottleneck DNN, they are able
to improve the CER to 40.2%.

3. DATASETS USED

The Cantonese dataset is IARPA Babel Cantonese [6]. This
includes 215 hours of Cantonese conversational and scripted
telephone speech, along with corresponding transcripts.
Speakers represent dialects from the Chinese provinces of
Guangdong and Guangxi. The 952 speakers range from ages
16 to 67, and the male-female ratio is 48%:52%. Audio was
collected from mobile and landline telephones, and from en-
vironments such as the street, at home, and inside a vehicle.
We train and test on only the conversational data (75% of all
data), as done by all prior work with this dataset.

The Mandarin dataset is AISHELL2 [7], which consists
of 1000 hours of clean read-speech data [3], along with corre-
sponding transcripts. The 1991 speakers range from ages 11
to 40 that speak on 12 topics such as voice control, news, and

technology. The male-female ratio is 40%:60%. Audio was
collected from three sources. From left to right: iOS device,
a high-fidelity microphone, and an Android device. We use
only the iOS-recorded data, as it produced the best results for
the Mandarin model.

3.1. Preprocessing

The Mandarin data has a sample rate of 16 kHz, whereas the
Cantonese data has a sample rate of 8§ kHz. To be able work
with the same extracted features, we downsample Mandarin
audio to 16 kHz. However, the audio quality of BABEL is
still worse, and about half of the audio is silence.

All data preprocessing, including resampling and conver-
sion to wav format, was done with sox. Speed perturbation
of each file (90%, 100%, 110%) is performed to augment the
training data, and volume perturbation is performed to make
models more invariant to test data volume.

3.2. Feature Extraction

The GMM models are trained with 13-dimensional Mel-
frequency cepstral coefficients (MFCCs) and 3 pitch features.
Note that Babel originally used Perceptual Linear Prediction
(PLP) features. The TDNN models are trained with 39-
dimensional MFCCs and 4 pitch features. They also include
for each frame-wise input a 100-dimensional i-vector. Two
extractors are trained, one for each of Cantonese and Man-
darin. We extract Cantonese i-vectors using one or the other
for different models.

4. MODEL ARCHITECTURE

Our model is implemented in Kaldi, and follows a fairly stan-
dard Kaldi pipeline. Our recipe is written with reference to
existing ones ~-TEDLIUM, BABEL, AISHELL?2.

4.1. Language Model

Written Chinese does not have spaces between words, so ASR
systems require sophisticated word segmentation. AISHELL2
[7] includes a open-source dictionary called DaCiDian, which
maps Chinese words in two layers, first from word to PinYin
syllables [8] , and second from PinYin to phoneme. Word
segmentation is done with Jieba [9], which uses a prefix-
tree based search approach, and the Viterbi algorithm for
out-of-vocabulary (OOV) words.

In parallel with AISHELL, we present a Cantonese dictio-
nary called DaaiCiDin, which maps Cantonese words to Yale
romanization system syllables, then maps these to X-SAMPA
phonemes. Its vocabulary is compiled from training set tran-
scripts of Babel Cantonese.

The statistical language model is implemented in SRILM,
and consists of n-grams of size 2, 3, and 4 using both Kneser-
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4.2. Acoustic Model

The acoustic model consists of two stages: a GMM-HMM

Fig. 1. GMM-HMM acoustic model

model, and a TDNN-LSTM model.

4.2.1. GMM

The Gaussian Mixture Model is shown in Figure 1.

It is

trained with an input dimension of 16 (13 MFCCs plus 3
pitches). A monophone model is trained as the starting point
for the triphone models. Then, a larger triphone model is
trained using delta features. To replace the delta features,
linear discriminant analysis (LDA) is applied on stack of
frames, and MLLT-based global transform is estimated iter-
atively. Next comes the Speaker Adaptive Training (SAT)
stage, whose outputs are aligned to lattices. Finally, we run
Kaldi clean-up scripts so all audio in the training data matches
the transcripts. The GMM model outputs the tied-triphone
state alignments.

4.2.2. TDNN

The TDNN-LSTM model consists of time-delayed neural net-
work [10] and long-short term memory layers. It alternates
between the layer types as shown in Figure 2.

We first train a TDNN on AISHELL2. The objective
function is lattice-free maximum mutual information (LF-
MMI) [11]. The network also uses sub-sampling as described
in [10] and is not fully connected — the input of each hidden
layer is a frame-wise spliced output of its preceding layer [7].
The input to the network is high resolution MFCC with cep-
stral normalization plus pitches, making the dimension 43.
In addition, a 100-dimensional i-vector is attached to each
frame-wise input using the extractor trained on AISHELL?2 to
encode speaker dependent information. i-vectors use as fea-
tures high-resolution MFCCs, pitches, and the GMM-HMM
tied-triphone state alignments.

In the transfer learning stage, we adapt the TDNN trained
for Mandarin as described above to the Cantonese language.
We initialize the weights of the first k layers of the TDNN to
be those of the Mandarin model, and set their learning rate = x.
Then we randomly initialize the weights of remaining layers,
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Fig. 2. TDNN-LSTM model + transfer learning from Man-
darin to Cantonese

and set their learning rate = 1.0. i-vectors are obtained using
either the AISHELL?2 or BABEL Cantonese i-vector extractor
depending on our experimental configuration.

5. EXPERIMENTS

We perform several experiments to explore the space of trans-
fer learning. All our experiments use the model architecture
as described above, and modify the learning rate of the trans-
ferred layers when training the Cantonese model. The learn-
ing rates we used are 0, 0.25, and 1.0. These are relative to the
learning rate of the final block, which is always 1.0. lr=0 cor-
responds to fixing transferred learning weights, whereas 0.25
and 1.0 allow the model to adjust them as necessary.

For 1r=0.25, we additionally train a model that uses the
i-vector extractor of AISHELL2 on the BABEL Cantonese
dev set. For comparison purposes, we also train two baseline
Cantonese models: one using the TDNN recipe from BABEL,
and one using the AISHELL?2 architecture without transfer
learning (all weights initialized to zero).

The same hyperparameters are used to train all models:
number of epochs=4, initial learning rate=0.001, final learn-
ing rate=0.0001, minibatch size=128, cross-entropy regular-
ization=0.1, and frames per example=150, 110, and 90. The
dropout schedule is 0, 30% after 50% of the data is seen, and
0 for the last layer.
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6. RESULTS AND DISCUSSION

In this section we report experimental results of transfer learn-
ing. First, we compare model performance in terms of log-
probability and training time. Second, we compare ASR per-
formance in terms of character and word error rates.

6.1. Metrics Used

Word error rate (WER) is the standard metric used for
speech recognition systems, and is given by:

S+D+1
N

S, D, and I are the number of substitutions, deletions, and
insertions respectively. N is the total number of words in the
reference transcription. WER ranges from 0-300%.

Character error rate (CER) follows the same formula,
but with characters as the unit. In written Chinese, the ma-
jority of words are made of two characters. Following prior
work, we primarily report CER results.

WER =

6.2. Model Loss

Figure 3 compares the the log-probability (log-prob) over
time for different models. The results show that log-prob
(of cross-entropy loss) is always higher for transfer learned
models, for both train and validation sets. Higher learning
rates correspond to higher log-prob.

These findings are consistent with those of Kunze et
al. [3]. Because the languages are not the same (for example,
Cantonese uses long vowels instead of diphthongs [12, 13]), it
is better to allow the earlier layer weights to adjust themselves
than to fix them.

6.3. Reduced Computing Time

Given that languages share common features, earlier layers in
the model should contain common features that can be trans-
ferred to that of a different language. Thus, we can fix the ear-
lier layers of the original Mandarin model, and this decreases
the average training time per iteration because the network
will need to back-propagate though fewer layers. Train times
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Fig. 5. Character Error Rate of transfer-learned models vs
baseline

depending on k are shown in Figure 4. Note that for all mod-
els Ir; 0, train time is equivalent to the baseline train time.

However, from our discussion in section 6.2, loss is al-
ways smaller at any point for non-zero learning rate. Thus, we
figure that in terms of achieving small loss, there is no reason
to freeze the early layers. Nevertheless, when we compare
the log-probability of the transferred model with the baseline
Cantonese model trained from scratch, we see the transferred
model starts off with a much lower loss and thus is able to
achieve the same loss with shorter time. Therefore, it is bene-
ficial in terms of computing time to transfer learn with a good
weight initialization.

6.4. Character and Word Error Rates

Figure 5 shows the speech recognition performance of the var-
ious systems on the development set. For 1r=0.0, the more
transferred layers, the worse results are — this makes sense
because of the distance between the languages. We should
still do some learning. For 1r=0.25 and 1.0, results are similar
across the board. We see that our best model, k=4 and 1r=1.0,
gives a slight increase of 0.1% CER vs the baseline.

We do not report results for the experiments with pre-
training i-vectors on Mandarin, and transferring to Cantonese,
as they do not improve performance. We suspect that weight
transfer could help here, as with the TDNN-LSTM, but leave
that to future work.



7. FUTURE WORK

For future work, we have several approaches in mind. First,
despite downsampling AISHELL-2 to 8 kHz to match BA-
BEL Cantonese, the latter still has far worse audio quality.
Therefore, we will try adding acoustic noise Mandarin, and
training the model to be transferred on that. Second, we
aim to explore the language model more. The LMs are only
trained on acoustic transcripts, and we can add more data.
Also, prior linguistic work has shown that correspondence
can be made between Cantonese and Mandarin phonemes
(and to a lesser extent, tones), so we can create a mapping be-
tween phonemes. Most written Chinese characters are words
in both Cantonese and Mandarin, so that would help with
mapping. Finally, fine-tuning the AISHELL-2 i-vectors after
pre-training would be a good experiment.

8. CONCLUSION

We propose a system to develop a basic ASR for Cantonese
through transfer learning of Mandarin. We first trained
a TDNN for Mandarin using large amounts of data from
AISHELL?2, and adapted the model to Cantonese by transfer-
ring the weights and adjusting the relative-learning rates of
earlier and later layers. We conducted multiple experiments
setting Ir = 0, 0.25 and 1 and show that log-probability is
always higher for transfer learned models. In addition, we
showed reduced computation time for freezing earlier.

We achieve a new state-of-the-art on BABEL Cantonese
(CER=34.6%) by transferring up to TDNN4 and using Ir=1.0.
Results are not as promising as prior work has been, but we
believe our work is still as step in the right direction. We
hope to make the transfer learning methods more informed
than simple model adaptation.
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