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Abstract
Whispered speech recognition presents significant chal-

lenges for conventional automatic speech recognition systems,
particularly when combined with dialect variation. However,
utilizing an efficient method to solve this problem using a low-
range dataset and processing load is beneficial. This paper pro-
poses a solution using a Mamba-based state-space model and
four fine-tuned self-supervised models consisting of Wav2Vec2,
WavLM, HuBERT, and Whisper to address the dual challenges
of whispered speech and dialect diversity. Based on our knowl-
edge, this represents the best performance reported on the
wTIMIT and CHAINS datasets for whispered speech recogni-
tion. We trained the models using whispered and normal speech
data across Singaporean, US, and Irish dialects. The findings
demonstrated that utilizing the proposed Mamba-based model
could work as a highly efficient model trained with low amounts
of whispered data to simultaneously work on whispered and
normal speech recognition. The code for this work is freely
available 1 2.
Index Terms: Whispered ASR, Self-Supervised Learning,
State-Space Models, Multi-Dialect

1. Introduction
Unconventional or challenging speech patterns can alter the
acoustic structure of speech, posing difficulties for standard au-
tomatic speech recognition systems [1, 2]. Whispered speech
is a form of speech production often used voluntarily to main-
tain privacy or avoid disturbing others in environments such as
libraries. It is sometimes produced involuntarily due to medical
conditions affecting the vocal cords. This type of speech can be
helpful in human-machine interaction, as individuals frequently
engage in whispered speech during such interactions. However,
most current speech recognition systems are designed exclu-
sively for normal speech and thus perform poorly when rec-
ognizing whispered speech. Therefore, it is essential to adapt
these systems to handle whispered speech effectively.

Just as whispering alters the acoustic structure of speech,
speaking in different dialects also substantially impacts acoustic
features and potentially affects the language model [3]. These
variations deviate from the standardized form of a language,
leading to reduced performance in speech recognition systems
that are primarily trained on standard speech. As a result, sys-
tems optimized for normal speech often struggle with whis-
pered speech or speech in unfamiliar dialects. This work aims
to enhance the robustness of speech recognition models by ad-

1https://github.com/areffarhadi/Whisper_fine_
tuning_ASR

2https://github.com/areffarhadi/Mamba-ASR

dressing challenges related to both whispered speech and di-
alect variation.

Although previous studies have addressed these challenges
separately, few have explored them in combination. In real-
world applications, speech recognition systems must be capa-
ble of handling both whispered speech and dialect variation si-
multaneously. Key studies addressing whispered speech chal-
lenges include [4] that used the WavLM model on the CHAINS
dataset and achieved 9.22% for word error rate (WER). Gener-
ative methods like recurrent neural networks and sequence-to-
sequence models have been employed to handle limited data
[5], with approaches like MelGAN and VQ-VAE used for
whisper-to-speech conversion [6]. End-to-end (E2E) systems,
[7], effectively captured high-frequency structures in whispered
speech, significantly reducing error rates but with a huge com-
putational load. [8] also developed an E2E system with a WER
of 36.3%. Additionally, [9] employed deep denoising autoen-
coders and Teager-energy-based cepstral features, leading to a
31% increase in recognition accuracy.

However, research on dialect variation in speech recogni-
tion is discussed in works such as [10], which explored the use
of a sequence-to-sequence model, listen, attend, and spell, to
train a single speech recognition system for multiple English
dialects, demonstrating that incorporating dialect-specific in-
formation improves performance, outperforming individually
trained models by 16.5%. Authors in [11] investigated multi-
dialect speech recognition using ensemble modeling, where
dialect-specific models are combined with attention weights
from an LSTM, achieving a 4.74% WER reduction compared
to a baseline, after training on 60,000 hours of speech from var-
ious English dialects.

Two strategies in designing a system for whispered speech
recognition could be utilizing a self-supervised model pre-
trained using a huge amount of data, and converting speech
between whispered and normal styles to produce more data
for training. Both of these solutions seem inefficient because
they need a huge amount of data and computational resources.
Whereby we proposed an efficient model for whispered speech
recognition. In this paper, we used a state-space model facil-
itated with new mamba layers to decrease the model size and
mix the small set of whispered speech in different dialects with
LibriSpeech as normal speech to train the model. In this situa-
tion, we try to find an efficient way to avoid using huge self-
supervised and conversion models and small datasets on the
ASR designing scale. In this paper, we design several ASR sys-
tems for the English language that address the dual challenges
of whispered speech and dialect variation, specifically focusing
on Singaporean, US, and Irish dialects. Given the limited avail-
ability of resources for whispered speech recognition, besides
the proposed Mamba-based model trained from scratch, we em-
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Figure 1: Differences of formats and acoustic features in normal
and whispered speech from the same speaker in Spectrogram

ployed self-supervised models, consisting of Wav2Vec2 [12],
WavLM [13], HuBERT [14], and Whisper [15]. These state-of-
the-art self-supervised models are fine-tuned on the whispered
datasets to adapt to whispered speech and different dialects.
However, We introduced an autoencode architecture consisting
of the Mamba and ConMamba layers for the proposed state-
space model. In this article, the Whisper model developed by
OpenAI is italicized to differentiate it easily from the concept
of whispered speech.

To design a multi-style and multi-dialect speech recognition
model, we utilized mixed data of whisper and normal speech,
using a part of the whispered portion of the wTIMIT dataset
[16], which features a Singaporean dialect. However, we in-
clude whispered speech samples from Irish and US dialects in
the testing phase. One of the objectives of this work is to en-
sure the system performs well with both whispered and normal
speech. Therefore, we incorporate the Irish speech dialect with
the normal speaking style in the training phase.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an in-depth discussion of whispered speech and
its characteristics. Section 3 presents the datasets and a brief
overview of the proposed models. Section 4 outlines the results
of the proposed system, and Section 5 concludes the study.

2. whispered and Multi-dialect speech
Whispered speech exhibits significant differences from normal
speech in terms of its production mechanisms and acoustic fea-
tures. The primary distinction lies in how they are produced.
In the whispered speech, the air is exhaled through an adjusted
pharynx, ensuring the vocal cords do not vibrate [17].

This leads to a breathier quality and a lack of the clear har-
monic structures typically observed in normal speech. Con-
sequently, formants, essential for identifying specific sounds,
are less apparent in the spectrograms of whispered speech [8].
Physiological studies using magnetic resonance imaging reveal
that the supraglottal structures become more constricted during
a whispered speech and are positioned lower, pressing against
the vocal folds to inhibit their vibration [18]. This produc-
tion mechanism gives whispered speech its distinct hushed and
breathy tone.

The elevated frequency range of whispered speech is
largely due to increased airflow turbulence. This turbulence pro-
duces a noisier signal with less distinct formant structures, es-
sential for recognizing vowels and certain consonants in regular
speech. As a result, whispered speech is generally less intel-
ligible, especially in environments with background noise. It
also has a flatter spectral slope, reduced overall energy, lower
amplitude, and less defined formants, particularly in lower fre-
quencies. Moreover, the articulation of phonemes changes in
whispered speech [8]. Studies have found that the first and sec-

ond formants in whispered speech tend to shift to higher fre-
quencies, and vowel durations are longer [19].

Despite these differences, whispered speech plays a valu-
able role in communication, often used in settings requiring
discretion, privacy, or when a quieter voice is necessary. Fig
1 demonstrates the distinct differences in the spectrograms of
normal and whispered speech signals produced by the same
speaker. As seen in this figure, whispered speech shows lower
amplitude and lacks the regular periodicity typical of normal
phonation, reflecting the absence of vocal fold vibrations. The
frequency content in whispered speech is more dispersed and
lacks the defined harmonic patterns seen in normal speech,
resulting in a more evenly distributed energy spectrum. On
the other hand, normal speech exhibits higher amplitude, dis-
tinct harmonic bands, and well-defined speech formants. The
spectrogram of normal speech shows brighter areas, indicating
greater intensity.

However, Dialect refers to regional or social variations of a
language, which, despite having many commonalities, often ex-
hibit significant differences in various linguistic aspects. These
distinctions can appear in areas such as phonology, grammar,
spelling, and vocabulary [11]. Consequently, automatic speech
recognition (ASR) systems trained or optimized for a particu-
lar dialect tend to perform poorly when applied to a different
dialect of the same language.

The combination of whispered speech and dialectal vari-
ation poses a unique challenge for ASR systems. Whispered
speech alters acoustic patterns, such as the lack of vocal fold
vibrations and reduced formant clarity, while dialectal differ-
ences introduce variations in phonology and vocabulary. These
factors significantly reduce ASR accuracy as systems trained
on standard speech or specific dialects struggle to adapt to the
acoustic and linguistic changes in whispered speech across dif-
ferent dialects. Addressing this issue requires more advanced
ASR models capable of handling the spectral differences in
whispered speech and the variability of dialects.

3. methodology
This section describes the materials and the proposed sys-
tem. Specifically, we introduce the wTIMIT and CHAINS
[16] datasets and provide a brief overview of the mamba-based
model engaged with convolutions and four self-supervised
models consisting of WavLM, HuBERT, Wav2Vec2, and Whis-
per.

3.1. Datasets

Whispered speech datasets for the English language are lim-
ited, and the wTIMIT dataset is one of the most widely used. It
contains speech data from 50 speakers, 20 with a Singaporean
dialect and 30 with a US dialect. The dataset is divided into
training and test sets, with both whispered and normal speech
available for each dialect. In this work, Singaporean speakers
were used to train the systems. So, we report the results for the
Speaker-Dependent (SD) mode using Singaporean speakers and
the Speaker-Independent (SI) mode using US English speak-
ers. Consequently, in the SI condition, the dialect variation also
presents an additional challenge. We separately report each di-
alect’s performance on both whispered and normal speech.

The training portion of the wTIMIT dataset contains ap-
proximately 13,000 utterances and 16 hours of speech, while
the test set comprises about 2,500 utterances in around 4 hours.
In addition to wTIMIT, we also use the CHAINS dataset. This
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Figure 2: Proposed ConMamba-encode-Mamba-decoder ASR
model

dataset includes solo and whispered speech from 36 speak-
ers across two speaking styles: normal and whispered. The
CHAINS dataset features 1,332 utterances per speaking style,
resulting in 6 hours of speech. The speech rates in this dataset
are abnormally high, which introduces an additional challenge
for the models. However, We need enough data to train the
proposed Mamba-based model from scratch, so we mix the
1000 hours of LibriSpeech [20] with our proposed multi-dialect
multi-style training data.

3.2. ConMamba Model

The proposed ConMamba is a speech recognition model de-
signed as a computationally efficient alternative to transformer-
based architectures, particularly Conformer. It leverages the
Mamba State-Space Model (SSM) to model long-range depen-
dencies while maintaining linear complexity in sequence length,
making it more scalable than self-attention for longer speech
sequences [21]. Inspired by Conformer, ConMamba integrates
depthwise-separable convolutions to enhance local feature ex-
traction and improve phoneme boundary modeling, addressing
the lack of explicit locality modeling in SSMs.

The architecture of the proposed system is illustrated in
Fig 2. The ConMamba encoder features stacked bidirectional
Mamba layers, each containing an SSM module that replaces
self-attention with a linear selective state-space approach. Ad-
ditionally, it includes a feedforward module, layer normaliza-
tion, and residual connections to improve stability and enhance
representation learning.

For decoding, we employ a unidirectional Mamba decoder,
which processes concatenated encoder output and autoregres-
sive token predictions using a cross-modality learning approach
[22]. This work uses two versions of the architecture. The
Mamba-Ver1 consists of a 12-layer bidirectional ConMamba
encoder with 4 heads cross attention combined with a 4-layer
unidirectional Mamba decoder, operating at 25 tokens per sec-
ond to ensure an optimal balance between efficiency and perfor-
mance in automatic speech recognition. The Mamba-Ver2 uses
the same parameters and methods in training, such as AdamW
as optimizer and training for 50 epochs, but with 8 attention
heads and 6 unidirectional Mamba in the decoder.

3.3. Self-supervised Models

This work utilizes four pre-trained models widely used in var-
ious speech processing tasks. Below is a brief introduction to
each model.

HuBERT is a transformer-based model that learns speech
features in a self-supervised manner. During training, masked
audio data is used, with k-means applied to generate discrete
target labels from hidden layers. These labels serve as the pre-
dicted units for the masked sections of the input speech [14].

Wav2Vec2 has revolutionized speech processing by apply-
ing self-supervised learning directly to raw audio data. The
model consists of a feature extractor built on convolutional lay-

ers and a transformer that provides a contextual understanding
of the input. A masking technique is employed during train-
ing, where segments of the input speech are masked, and the
network predicts the missing parts [12].

WavLM is an extension of the Wav2Vec2 and HuBERT
models, offering improvements in self-supervised learning. In
addition to the masking technique, WavLM incorporates audio
mixing, introducing a target speaker in the learning process.
The model predicts masked sections while identifying speaker-
specific information, making it particularly effective in tasks
like speaker recognition and diarization [13].

Whisper is an encoder-decoder transformer model trained
on 680,000 hours of multilingual speech. It is designed to han-
dle various accents and background noise, making it highly ver-
satile for speech recognition. In addition to speech recognition,
Whisper supports language identification and multilingual tran-
scription, and it can perform tasks such as speaker recognition
and voice activity detection. The decoder part uses a token set
for language identification and transcription [15].

4. Experimental Results
In this work, the proposed state-space and self-supervised mod-
els for whispered speech recognition have been trained to per-
form well with both whispered and normal speech. As a base-
line, we evaluated the performance of the pre-trained Whisper
Large-v2 model on the test set to assess the need for a special-
ized system for the proposed challenges.

As previously mentioned, the Whisper model can recog-
nize languages and transcribe text accordingly. However, sig-
nificant issues were encountered in detecting English with a
Singaporean (SG) dialect despite correctly identifying the US
and Irish dialects. This problem was especially pronounced in
Singaporean whispered speech, where in over 90% of cases,
the language was incorrectly classified as Malay. To mitigate
the impact of this language recognition error, we decoupled the
multilingual components of the model by calling the tokenizer
and other key modules, such as the feature extractor, separately.
Table 1 presents the ASR baseline results.

As shown in Table 1, while the Whisper model achieved
higher accuracy for normal speech, its performance on whis-
pered speech was notably poorer. The WER for whispered
speech was 21.67%, 16.58%, and 5.97% for SG, Irish, and
US dialects, respectively. Additionally, dialect-specific perfor-
mance disparities were observed for normal speech, where the
WER for the SG dialect was nearly twice that of the US di-
alect despite identical text and environmental conditions. These
results emphasize the need for a system to effectively handle
whispered speech and dialect variation. Table 2 summarises
the proposed systems’ performance. For finetuning the self-
supervised models, all parameters were kept identical across the
four models for consistency in comparison. During training,
we applied the SpecAugment algorithm [23] in time-masking
mode. The models were trained with a batch size of 8, using
a learning rate schedule, and ran for 5 epochs to prevent over-
fitting. The AdamW optimizer was employed [24]. In the de-
coding stage, beam search and greedy search were used for the
WavLM, HuBERT, and Wav2Vec2 models, implemented us-
ing the PaddleSpeech toolbox [25], and results for each method
are reported separately. These experiments were conducted on
an Nvidia A100 80GB GPU. We used the Base+ version of
WavLM, the Large-960 version of HuBERT and Wav2Vec2,
and the Large-v2 version of Whisper.

In most previous studies using the wTIMIT dataset, both di-



Table 1: Result of the baseline system as WER% based on Whisper model for three dialects in two speaking styles.

Model Whisper-SG Normal-SG Whisper-US Normal-US Whisper-IRI
Pre-trained Whisper 21.67 7.65 3.4 5.97 16.58

Table 2: Result of four fine-tuned self-supervised models as WER% based on greedy and beam searches. The greedy search wasn’t used
for the Whisper model. Bolded values indicate the best result for each test set, as well as the best performance among self-supervised
and Mamba models.

Whisper-SG Normal-SG Whisper-US Normal-US Whisper-IRI
Model

Greedy Beam Greedy Beam Greedy Beam Greedy Beam Greedy Beam
HuBERT 3.38 2.16 0.78 0.70 2.10 1.20 6.22 5.79 10.00 9.80

Wav2Vec2 4.58 1.31 3.12 0.92 3.39 2.45 5.90 4.28 12.09 11.49
WavLM 3.60 0.80 2.87 0.63 3.78 2.93 7.52 5.99 11.94 12.38
Whisper - 0.51 - 0.12 - 0.40 - 0.92 - 2.11

Mamba-Ver1 - 1.90 - 2.19 - 2.62 - 1.75 - 18.31
Mamba-Ver2 - 0.56 - 0.63 - 1.75 - 0.97 - 1.19

Figure 3: Training and evaluation losses for Mamba-Ver1 and Mamba-Ver2

alects were included in system training. This work designed the
evaluations to be more challenging and closer to real-world ap-
plications. The proposed systems were exposed to normal and
whispered speech during fine-tuning for the SG dialect. In con-
trast, only normal speech was included for the Irish dialect, and
Irish whispered speech was not encountered during training. Fi-
nally, during training, the systems were not provided with data
for the US dialect, neither normal nor whispered speech.

According to the results, the proposed systems outperform
the baseline Whisper model, as seen in Table 2. The beam
search algorithm consistently outperformed greedy search in
most cases. Therefore, the Whisper and Mamba models were
evaluated only with beam search to reduce the computational
cost. Across the five evaluation plans, the Whisper model
achieved the lowest WER. For SG normal speech, a WER of
0.51% was obtained. For US dialect, the WER was 0.92% for
whispered speech and 0.40% for normal speech. Finally, for
whispered speech in the Irish dialect, the WER was 2.11%. The
unusually high speech rate in the CHAINS dataset for whis-
pered speech likely contributed to the lower performance of the
Irish dialect compared to other dialects. However, the loss value
during the training process is depicted in Fig 3. The proposed
Mamba-Ver2 model performed close to the Whisper model but
with a significantly smaller model size and training data. The
power of this state-space model based on Mamba even could
perform better than Whisper for the whispered speech with Irish
dialect with 1.19% for WER. To design an efficient model for
this challenging scenario, we can use a smaller model that we
could train with tiny data compared to the Whisper model and
its massive amount of data in pre-training. Compared with
previous works, the proposed systems with this training strat-
egy produced near-equivalent results across various dialects and
performed well on both whispered and normal speech. This

demonstrates the effectiveness of the techniques employed in
improving the system’s robustness and ability to model differ-
ent acoustical behaviors of speech signals.

5. Conclusion

Whispered speech recognition presents a significant challenge
for conventional ASR systems, particularly when combined
with additional factors such as limited data and dialect varia-
tion. These challenges can severely degrade the performance
of traditional systems, highlighting the necessity of developing
ASR models specifically tailored to handle whispered speech.
However, it is very important to make an efficient system that
is scalable and small enough to be usable on different sizes
of computational resources. Moreover, a small set of data is
needed for training and reach a reasonable result.

This paper addressed proposed challenges with a highly ef-
ficient model based on a version of Mamba as the state-of-the-
art method in modeling sequential data. On the other hand,
four popular self-supervised models consisting of Wav2Vec2,
WavLM, HuBERT, Whisper were employed. We first evalu-
ated the pre-trained Whisper model as a baseline, demonstrating
that standard ASR systems struggle to perform satisfactorily on
whispered speech. We fine-tuned the models to improve perfor-
mance using both whispered data and diverse dialects.

The results showed that all the systems outperformed the
baseline, with the Whisper and efficient Mamba-Ver2 models
delivering the best overall performance. The proposed mod-
els handled both whispered and normal speech across all three
dialects (SG, US, and Irish) with high accuracy, proving their
effectiveness in addressing the dual challenges of whispered
speech recognition and dialect variation.
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